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Abstract: In this paper, we study the permutation properties of the class of trinomials of the form f(x) = x4q+1 +

λ1x
q+4 +λ2x

2q+3 ∈ Fq2 [x] , where λ1, λ2 ∈ Fq and they are not simultaneously zero. We find all necessary and sufficient

conditions on λ1 and λ2 such that f(x) permutes Fq2 , where q is odd and q = 22k+1, k ∈ N .

Key words: Permutation polynomials, finite fields, Hasse-Weil bound, cryptography

1. Introduction

Let Fq be a finite field with q elements, where q is a prime power. A polynomial g(x) ∈ Fq[x] is called
a permutation polynomial (PP) over Fq whenever the associated function g : a 7→ g(a) is a permutation
of Fq . Permutation polynomials have many applications in areas such as cryptography, coding theory, and
combinatorial designs. The studies on permutation polynomials goes back to work done by Dickson and Hermite
(see, [6, 9]). There are several books on finite fields such as [19] and Chapter 8 in [20], which are very helpful
for the interested reader to get into the topic. Moreover, the survey papers (see, [10, 12, 27]) are also useful as
they consist of many of the recent results on permutation polynomials over finite fields. We refer the interested
reader to [3, 4, 8, 11, 17, 18, 21] and the references therein for more results on permutation polynomials over
finite fields.

There has been a great interest in permutation polynomials with a few terms because of their simple
algebraic structures and extraordinary properties. In this paper, our aim is to determine the permutation
properties of the class of trinomials of the form f(x) = x4q+1 + λ1x

q+4 + λ2x
2q+3 ∈ Fq2 [x] , where λ1, λ2 ∈ Fq

which are not simultaneously zero.
The paper is organized as follows: In Section 2, we introduce the basic tools that we use throughout the

paper. We note that the polynomial f(x) = x4q+1 + λ1x
q+4 + λ2x

2q+3 can be written as f(x) = x5h(xq−1) ,
where h(x) = λ1x + λ2x

2 + x4 . In Section 3, we determine the necessary and sufficient conditions for which
h(x) has no roots in µq+1 , where µq+1 = {a ∈ F∗

q2 | aq+1 = 1} . In Sections 4 and 5, we determine all necessary

and sufficient conditions for f(x) to be a PP of Fq2 in even characteristic with q of the form q = 22k+1, k ∈ N ,
and in odd characteristic, respectively.
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2. Preliminaries
There is a well known criterion due to Wan and Lidl [25], Park and Lee [22], Akbary and Wang [1], Wang [26] and
Zieve [28], which is widely used in order to determine whether a polynomial of the form f (x) = xrh

(
x(qn−1)/d

)
permutes Fqn or not. It is given in the following lemma.

Lemma 1 [1, 22, 25, 26, 28] Let h (x) ∈ Fqn [x] and d, r be positive integers with d dividing qn − 1 . Then
f (x) = xrh

(
x(qn−1)/d

)
permutes Fqn if and only if the following conditions hold:

(i) gcd (r, (qn − 1) /d) = 1 ,

(ii) xrh (x)
(qn−1)/d permutes µd , where µd = {a ∈ F∗

qn | ad = 1} .

In this paper, we plan to apply Lemma 1 over the finite field Fq2 with d = q + 1 , but instead of finding the
conditions for which g(x) = xrh(x)q−1 permutes µq+1 , we will use the following idea throughout the paper:

Let z ∈ Fq2 \Fq be an arbitrary element . For any x ∈ Fq , let Φ : Fq ∪{∞} −→ µq+1 be the map defined

by Φ(x) =
x+ z

x+ zq
, where Φ(∞) = 1 . It is somewhat easy to observe that Φ is one to one from Fq ∪ {∞} to

µq+1 and thus onto since the number of elements on both sides are equal.

One can find out that Φ−1 (x) =
xzq − z

1− x
, for any x 6= 1 with Φ−1 (1) = ∞ . In this setting, we have

g(x) = xrh(x)q−1 is one to one on µq+1 and therefore permutes µq+1 if and only if
(
Φ−1 ◦ g ◦ Φ

)
is one to one

on Fq ∪ {∞} . An analogous idea has been used in a few more studies before, see for instance [2, 3, 13, 21].
This situation can be easily followed in the diagram below:

Fq ∪ {∞} Φ−1◦g◦Φ−−−−−−→ Fq ∪ {∞}yΦ

xΦ−1

µq+1
g−−−−→ µq+1

Moreover, our suitable choice of z ∈ Fq2 \ Fq results in simpler computations.

3. Roots of h(x) in µq+1

Assuming the notation above, we define g(x) := x5h(x)q−1 , where h(x) = λ1x + λ2x
2 + x4 , in order to apply

Lemma 1. Before studying when g(x) permutes µq+1 , we have to make sure that g(x) has no roots in µq+1 . As
0 6∈ µq+1 , we have to consider the roots of h(x) . First, note that µq+1 ∩ Fq = {−1, 1} . So, h(1) = λ1 + λ2 + 1

and h(−1) = −λ1 + λ2 + 1 must be nonzero. Next, the following lemma characterizes when h(x) has roots in
µq+1 \ {1,−1} .

Lemma 2 [7, Lemma 2] The polynomial h(x) has a root in µq+1 \ {1,−1} if and only if there exists A ∈ Fq

such that m(x) = x2 +Ax+ 1 is irreducible over Fq and m(x) divides h(x) .

Proof The set µq+1 \ {1,−1} contains exactly the elements θ ∈ Fq2 \ Fq with θq+1 = 1 . Let θ ∈ Fq2 \ Fq

be such that h(θ) = 0 and θq+1 = 1 . As h(x) is a polynomial over Fq , θq is another root of h(x) . Then
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m(x) = (x − θ)(x − θq) = x2 − (θ + θq)x + θq+1 = x2 + Ax + 1 divides h(x) . Moreover, m(x) is the minimal
polynomial of θ over Fq and hence irreducible.

For the converse, assume that an irreducible polynomial m(x) = x2 + Ax + 1 divides h(x) . The roots
θ1 and θ2 of m(x) = (x− θ1)(x− θ2) are roots of h(x) as well. As m(x) is irreducible, the roots lie in Fq2 \Fq

and they are conjugates, i.e., θ2 = θq1 . From the constant coefficient of m(x) , we find 1 = θ1θ2 = θq+1
1 . 2

In the following proposition, we determine the conditions for which h(x) does not have any roots in µq+1 .
Throughout the paper, the trace function denoted by Tr stands for the absolute trace from Fq onto F2 .

Proposition 1 Let h(x) = λ1x + λ2x
2 + x4 ∈ Fq[x] . Assume that h(1) = λ1 + λ2 + 1 6= 0 and h(−1) =

−λ1 + λ2 + 1 6= 0 . The polynomial h(x) has no roots in µq+1 if and only if one of the following conditions
holds:

i) λ2 6= 1− λ2
1 or λ2

1 − 4 is a square in Fq , where Fq is of odd characteristic,

ii) λ2 6= 1− λ2
1 or Tr

(
1

λ1

)
= 0 when λ1 6= 0 , where Fq is of even characteristic.

Proof Assuming h(x) = λ1x + λ2x
2 + x4 = (x2 + Ax + 1)(x2 + ax + b) and solving for A, a, b , we obtain

A = −λ1 , a = λ1 , b = 0 and −a2 + 1 = λ2 . Hence, by using Lemma 2 above, we conclude that h(x) has a
root in µq+1 \ {1,−1} if and only if λ2 = 1− λ2

1 and x2 − λ1x+ 1 is irreducible. In odd characteristic, this is
equivalent to say that h(x) has no roots in µq+1 \ {1,−1} if and only if λ2 6= 1 − λ2

1 or λ2
1 − 4 is a square in

Fq (i.e. x2 − λ1x + 1 is reducible). In even characteristic, h(x) has no roots in µq+1 \ {1,−1} if and only if

λ2 6= 1− λ2
1 or Tr

(
1

λ1

)
= 0 , where λ1 6= 0 (see for instance Theorem 2.25 in [19]). 2

Now, suppose that h(x) has no roots in µq+1 , then for any x ∈ µq+1 , we have the following:

g(x) = x5h(x)q−1 =
x5(λ1x

q + λ2x
2q + x4q)

λ1x+ λ2x2 + x4

=

x5

(
λ1

1

x
+ λ2

1

x2
+

1

x4

)
λ1x+ λ2x2 + x4

=
λ1x

3 + λ2x
2 + 1

x3 + λ2x+ λ1
.

Computing g ◦ Φ , we get

(g ◦ Φ)(x) =

λ1

(
x+ z

x+ zq

)3

+ λ2

(
x+ z

x+ zq

)2

+ 1(
x+ z

x+ zq

)3

+ λ2

(
x+ z

x+ zq

)
+ λ1

=
λ1(x+ z)3 + λ2(x+ z)2(x+ zq) + (x+ zq)3

(x+ z)3 + λ2(x+ z)(x+ zq)2 + λ1(x+ zq)3

=
∆(z, x)

∆(zq, x)
.
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Then

(Φ−1 ◦ g ◦ Φ)(x) = zq∆(z, x)− z∆(zq, x)

∆(zq, x)−∆(z, x)
. (1)

Computing the numerator, we get

N = zq∆(z, x)− z∆(zq, x) = zqλ1(x+ z)3 + zqλ2(x+ z)2(x+ zq) + zq(x+ zq)3

− z(x+ z)3 − zλ2(x+ z)(x+ zq)2 − zλ1(x+ zq)3. (2)

Similarly, computing the denominator, we obtain

D = ∆(zq, x)−∆(z, x) = (x+ z)3 + λ2(x+ z)(x+ zq)2 + λ1(x+ zq)3

− λ1(x+ z)3 − λ2(x+ z)2(x+ zq)− (x+ zq)3. (3)

4. PPs over finite fields of even characteristic
In this section, we study the permutation properties of the polynomial f(x) = x5h(xq−1) over Fq2 , where
h(x) = λ1x + λ2x

2 + x4 ∈ Fq[x] and Fq is a finite field of even characteristic with q = 22k+1, k ∈ N . We plan
to apply Lemma 1 to obtain our results. Note that, according to Lemma 1 (i), we first need to have 5 ∤ q − 1 .
By an inductive argument, one can easily show that 5 | 2n − 1 if and only if n = 4k, k ∈ N . Hence, 5 ∤ q − 1

under our assumption that q is of the form q = 22k+1, k ∈ N . We also note that when λ1 = λ2 = 0 , then it is
well-known that the monomial f(x) = x4q+1 permutes Fq2 if and only if gcd(q2 − 1, 4q + 1) = 1 (e.g. see [19,
Theorem 7.8]). Hence, we are interested in the case when λ1 or λ2 is not zero. The following theorem is our
first main result.

Theorem 1 Let q = 22k+1 , k ∈ N . Assume that h(1) = λ1 + λ2 + 1 6= 0 . Then, f(x) = x5h(xq−1) is

a permutation polynomial of Fq2 if and only if Tr

(
λ2

λ1 + λ2 + 1

)
6= 0 when λ2 6= 0 and exactly one of the

following conditions holds:

i) λ2
1 + λ2 + 1 = 0 ,

ii) λ2 = 1 .

Proof Let zq = z + 1 and so z2 = z + 1 . Substituting zq = z + 1 in the numerator in (2), we obtain

N = (λ1 + λ2 + 1)x3 + (λ2 + 1)x2 + (λ1 + λ2)x+ λ1 + 1

and similarly substituting zq = z + 1 in the denominator in (3), we obtain

D = (λ1 + λ2 + 1)(x2 + x) + λ2.

Here, note that λ1 + λ2 + 1 = h(1) 6= 0 . So we can write

N

D
=

x3 +A2x
2 +A1x+A0

x2 + x+B0
,
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where A2 =
λ2 + 1

λ1 + λ2 + 1
, A1 =

λ1 + λ2

λ1 + λ2 + 1
, A0 =

λ1 + 1

λ1 + λ2 + 1
, B0 =

λ2

λ1 + λ2 + 1
. Here, x2 + x+ B0 must be

nonzero if N and D are coprime, so in that case, we need to assume that Tr(B0) 6= 0 (see for instance Theorem
2.25 in [19]). If N and D are not coprime, then

N = (x2 + x+B0)(x+ d) = x3 + (d+ 1)x2 + (B0 + d)x+B0d.

By comparing the coefficients, we obtain d =
λ1

λ1 + λ2 + 1
and A0 = B0d =⇒ λ2

1 + λ2 + 1 = 0 .

Case 1: λ2
1 + λ2 + 1 = 0 :

If λ1 = 1 , then λ2 = 0 , which contradicts h(1) 6= 0 . Similarly, if λ1 = 0 , then λ2 = 1 , which again contradicts
h(1) 6= 0 . If λ1 6= 0 and λ1 6= 1 , then we have

Tr(B0) = Tr

(
1− λ2

1

λ1 − λ2
1

)
= Tr

(
(1− λ1)(1 + λ1)

λ1(1− λ1)

)
= Tr

(
1 + λ1

λ1

)
= Tr

(
1

λ1

)
+Tr(1).

Note that Tr(1) = 1 when q = 22k+1 . Hence, the condition Tr(B0) = 1 gives Tr

(
1

λ1

)
= 0 , satisfying

Proposition 1. Note that we have N

D
= x+ d , where d =

λ1

λ1 + λ2 + 1
6= 0 , which always permutes Fq , and the

proof of (i) ends here.
Case 2: λ2

1 + λ2 + 1 6= 0 :
In this case, N and D are coprime and we assume that Tr(B0) 6= 0 .

Computing
x3 +A2x

2 +A1x+A0

x2 + x+B0
− y3 +A2y

2 +A1y +A0

y2 + y +B0

x− y

we obtain

C(x, y) = x2y2 + xy2 + x2y + xy +B0(x
2 + y2) + (A2B0 +A0)(x+ y) +A1B0 +A0 (4)

First, assume that C(x, y) in (4) is decomposed in the following form

(x+ α)(x+ αq)(y + α)(y + αq).

Computing this product and comparing the coefficients of it with the corresponding ones in C(x, y) , we get:
α + αq = 1, αq+1 = B0, (α + αq)αq+1 = A2B0 + A0 , which implies that B0 = A2B0 + A0 . Computing
B0 = A2B0 +A0 , we obtain that λ2

1 + λ2 + 1 = 0 , which yields a contradiction.
Next, assume that C(x, y) in (4) is decomposed in the following form:

(x2 + α1xy + β1y
2 + lot)(α2x

2 + β2xy + γ2y
2 + lot).

Here and throughout the paper, we use “lot” as the abbreviated form of the so called “lower order terms”.
Computing this product and comparing the coefficients of it with the corresponding ones in C(x, y) , we get:
α2 = 0, β2 = 0, α1 = 0, β1 = 0, γ2 = 1 , so we have

(x2 + α3x+ β3y + lot)(y2 + α4x+ β4y + lot).
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Comparing the coefficients of it with the corresponding ones in C(x, y) once more, we get: α3 = 1, α4 = 0, β3 =

0, β4 = 1 , so we arrive at
(x2 + x+ η)(y2 + y + ξ),

which implies that B0 = η = ξ , η = ξ = A2B0 + A0 , so we have A2B0 + A0 = B0 ending in the contradiction
λ2
1 + λ2 + 1 = 0 once more.

Finally, assume that C(x, y) in (4) is decomposed in the following form:

(xy + α1x+ β1y + lot)(xy + α2x+ β2y + lot).

Computing this product and comparing the coefficients of it with the corresponding ones in C(x, y) , we get:
α1 + α2 = 1 , that is, α2 = α1 + 1 and β1 + β2 = 1 , that is, β2 = β1 + 1 . Substituting these in the above
decomposition, we get

(xy + α1x+ β1y + α)(xy + (α1 + 1)x+ (β1 + 1)y + β).

Comparing the coefficients of it with the corresponding ones in C(x, y) once more, we get: β+α1+β1+α = 1 ,
α1(α1 + 1) = β1(β1 + 1) = B0 , α1β + α(α1 + 1) = β1β + α(β1 + 1) = A2B0 +A0 and αβ = A1B0 +A0 . Here,
α1β+α(α1 +1) = β1β+α(β1 +1) implies that (β+α)(α1 + β1) = 0 and so we have either β = α or α1 = β1 .

Let us first assume that β = α . Then we obtain α1+β1 = 1 , α = A2B0+A0 = β , α2 = A1B0+A0 and
thus (A2B0 +A0)

2 = A1B0 +A0 , which implies that either λ2 = 0 or λ2
1λ2 + λ2

1 + λ2
2 + 1 = 0 . If λ2 = 0 , then

B0 = 0 , which contradicts our assumption Tr(B0) 6= 0 . Now let λ2
1λ2+λ2

1+λ2
2+1 = (λ2

1+λ2+1)(λ2+1) = 0 ,

which implies λ2 = 1 . Note that, in this case, Tr(B0) = Tr

(
λ2

λ1 + λ2 + 1

)
= Tr

(
1

λ1

)
6= 0 but λ2

1+λ2+1 6= 0 ,

therefore Proposition 1 is satisfied. Now, assume that the factor xy + α1x + β1y + α = 0 for some x, y ∈ Fq .
Taking the q -th power of this equation, we get xy + αq

1x + βq
1y + α = 0 and adding these two equations we

obtain (α1 + αq
1)x+ (β1 + βq

1)y = 0 which implies that x = y since β1 + βq
1 = α1 + 1+ αq

1 + 1 = α1 + αq
1 . The

proof of (ii) ends here.
Next, assume that α1 = β1 , then we have β = α + 1 and α(α + 1) = A1B0 + A0 . By comparing

the coefficients of this decomposition with the corresponding ones in C(x, y) once more, together with further
calculations, we obtain B0 = α2 + α . However, this implies A1 = 1 , which is a contradiction with h(1) 6= 0 .

Finally, assume that C(x, y) in (4) is absolutely irreducible. Homogenizing C(x, y) with x = X
Z and

y = Y
Z , we obtain a homogeneous polynomial of degree d = 4 . Let C̃(X,Y, Z) ∈ Fq[X,Y, Z] be the homogeneous

polynomial defined as

C̃(X,Y, Z) = Z4C

(
X

Z
,
Y

Z

)
.

Let P2(Fq) denote the projective space consisting of projective coordinates (X : Y : Z) . Let N = |{(x, y) ∈
Fq × Fq | C(x, y) = 0}| be the number of affine Fq -rational points of C . Let V = |{(X : Y : Z) ∈ P2(Fq) |

C̃(X,Y, Z) = 0}| be the number of projective Fq -rational points of C̃ . Let V0 and V1 be the number of

projective Fq -rational points of C̃ corresponding to the cases Z = 0 and Z 6= 0 respectively. Namely,

V0 = |{(X : Y : 0) ∈ P2(Fq) | C̃(X,Y, 0) = 0}|

and V1 = |{(X : Y : 1) ∈ P2(Fq) | C̃(X,Y, 1) = 0}|.
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It follows from the definitions that N = V1 and V = V0 + V1 . Moreover, it follows from (10) that C̃(X,Y, 0) =

X2Y 2 . This implies V0 = |{(1 : 0 : 0), (0 : 1 : 0)}| = 2 . Using [14, Theorem 5.28], we get

|V − q| ≤ (d− 1)(d− 2)q1/2 + c(d) = 6q1/2 + 19, (5)

where c(d) = 1
2d(d− 1)2 + 1 and d = 4 . The arguments above imply that

V = N + 2. (6)

Combining (5) and (6), we conclude that

|N − q| = |(V − q)− 2| ≤ |V − q|+ 2 ≤ 6q1/2 + 21.

Note that

|{(x, y) ∈ F2
q | C(x, y) = 0 and x = y}| ≤ 4

as C(x, x) is a polynomial of degree 4 in Fq[x] . Therefore, if q − 6q1/2 − 21 > 4 , then C(x, y) has an affine
point off the line x = y . As q is a prime power, we note that q − 6q1/2 − 21 > 4 for any such q , provided
that q ≥ 78 . As a result, we deduce that f(x) is not a permutation polynomial of Fq2 if C(x, y) is absolutely
irreducible and q ≥ 78 . It remains to consider q < 78 . Now, since characteristic of Fq is even and k is odd,
we need to consider only q ∈ {2, 8, 32} . Using MAGMA [5], we observe that there are no other permutation
polynomials of the form f(x) other than the ones obtained by Theorem 1. 2

5. PPs over finite fields of odd characteristics
In this section, we deal with the permutation properties of the polynomial f(x) = x5h(xq−1) over Fq2 , where
h(x) = λ1x+λ2x

2+x4 , where λ1, λ2 ∈ Fq are not simultaneously zero and Fq is a finite field of odd characteristic
such that 5 ∤ q − 1 . Our plan is to apply Lemma 1 again and the following theorem is our second main result.

Theorem 2 Let Fq be a finite field of odd characteristic such that 5 ∤ q−1 . Let h(x) = λ1x+λ2x
2+x4 , where

λ1, λ2 ∈ Fq are not simultaneously zero and assume that h(1) = λ1+λ2+1 6= 0 and h(−1) = −λ1+λ2+1 6= 0 .
Then, f(x) = x5h(xq−1) is a permutation polynomial of Fq2 if and only if any one of the following conditions
hold:

i) λ1 = 0, λ2 = 3 and −3 is a nonsquare in Fq ,

ii) λ2 = 0 and Fq is of characteristic three,

iii) λ2
1 + λ2 − 1 = 0 and λ2

1 − 4 is a square in Fq ,

iv) λ2 = 0 and −3 is a square in Fq .

v) λ2 = −3 and −3(λ2
1 − 4) is a square in Fq .
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Proof When q is odd, we set zq = −z and rewrite (2) and (3) as follows:

N = −λ1z(x+ z)3 − λ2z(x+ z)2(x− z)− z(x− z)3 − z(x+ z)3 − λ2z(x+ z)(x− z)2

−λ1z(x− z)3

= −2z
(
(λ1 + λ2 + 1)x3 + (3λ1 − λ2 + 3)xz2

)
,

D = (x+ z)3 + λ2(x+ z)(x− z)2 + λ1(x− z)3 − λ1(x+ z)3 − λ2(x+ z)2(x− z)− (x− z)3

= −2z
(
(3λ1 + λ2 − 3)x2 + (λ1 − λ2 − 1)z2

)
.

First, assume that 3λ1 + λ2 − 3 = 0 . Then computing N

D
, we obtain

N

D
= (λ1 + λ2 + 1)

x3 +
3λ1 − λ2 + 3

λ1 + λ2 + 1
z2x

(λ1 − λ2 − 1)z2



Note that λ1 + λ2 + 1 = h(1) 6= 0 , so we can ignore the prefactor (λ1 + λ2 + 1) in N

D
above and

λ1 − λ2 − 1 = −h(−1) 6= 0 , so the denominator of N

D
is nonzero. We let A =

3λ1 − λ2 + 3

λ1 + λ2 + 1
z2 and by

substituting λ2 = 3− 3λ1 in A , we obtain

A =
6λ1

−2λ1 + 4
z2 =

3λ1

−λ1 + 2
z2.

Observe that −λ1 + 2 6= 0 since otherwise λ1 = 2 would imply λ2 = −3 , which contradicts h(1) =

λ1 + λ2 + 1 6= 0 .
Computing (

x3 +Ax
)
−
(
y3 +Ay

)
x− y

we get
C(x, y) = x2 + xy + y2 +A. (7)

Assume that C(x, y) is not absolutely irreducible and it decomposes as:

(x+ α1y + α2)(β1x+ β2y + β3).

Comparing the coefficients of the above product with C(x, y) , we obtain β1 = 1, β2 + α1 = 1, β3 = −α2 and
α1(1− α1) = 1 , so we have

(x+ α1y + α2)(x+ (1− α1)y − α2) = x2 + xy + y2 + (α2 − 2α1α2)y − α2
2.

Now comparing the coefficient of y with the one in C(x, y) , we obtain α2(1 − 2α1) = 0 , which implies that

α2 = 0 or α1 =
1

2
. First, if α2 = 0 , then A = −α2

2 = 0 , which implies λ1 = 0 and so λ2 = 3 , since
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3λ1 + λ2 − 3 = 0 . In this case, we have C(x, y) = (x+α1y)(x+ (1−α1)y) . Therefore, either the coefficients of
both factors should not be in Fq (i.e., α1 /∈ Fq ) or both factors must be equal to x− y . For the case α1 /∈ Fq ,
we require the polynomial x2 − x + 1 satisfied by α1 (since we have α1(1 − α1) = 1) to be irreducible over

Fq . Note that the roots are of the form 1±
√
−3

2
, hence we need −3 to be a nonsquare in Fq . Note also

that, in this case 3 = λ2 6= 1 − λ2
1 = 1 as q is odd and hence Proposition 1 is already satisfied; moreover,

h(1) = λ1 + λ2 + 1 = 0 + 3 + 1 = 4 = h(−1) = −λ1 + λ2 + 1 6= 0 since char(Fq) is odd, that is, in this case
h(x) has no roots in µq+1 . In the case x + α1y = x + (1 − α1)y = x − y , we get α1 = 1 − α1 = −1 , which

implies that α1 =
1

2
. Substituting α1 =

1

2
in α1(1− α1) = 1 , we obtain that 4 = 1 , which is only possible for

char(Fq) = 3 but then λ1 = λ2 = 0 , which contradicts with our assumption that λ1, λ2 are not simultaneously
zero.

Next, if α1 =
1

2
, then α1(1 − α1) = 1 implies 4 = 1 , forcing the characteristic to be 3 . Note that in

characteristic 3 , we have A = 0 and both factors become x+ 1
2y = x−y . In this case, 3λ1+λ2−3 = 0 implies

λ2 = 0 and we obtain item (ii). Note that 0 = λ2 = 1− λ2
1 would imply λ1 = ±1 , but then h(1) = h(−1) = 0 ,

contradicting with our assumptions. Therefore, λ2 6= 1− λ2
1 and Proposition 1 is again satisfied. The proofs of

items (i) and (ii) are completed.
Now, assume that C(x, y) in (7) is absolutely irreducible. In this paper, we use [14, Theorem 5.28], which

constitutes a bound obtained from the Hasse-Weil bound. Let C̃(X,Y, Z) ∈ Fq[X,Y, Z] be the homogeneous
polynomial of degree d = 2 defined as

C̃(X,Y, Z) = Z2C

(
X

Z
,
Y

Z

)
.

Let N = |{(x, y) ∈ Fq × Fq | C(x, y) = 0}| be the number of affine Fq -rational points of C . Let P2(Fq)

denote the projective space consisting of projective coordinates (X : Y : Z) and V = |{(X : Y : Z) ∈ P2(Fq) |

C̃(X,Y, Z) = 0}| be the number of projective Fq -rational points of C̃ . Let V0 and V1 be the number of

projective Fq -rational points of C̃ corresponding to the cases Z = 0 and Z 6= 0 , respectively. Namely,

V0 = |{(X : Y : 0) ∈ P2(Fq) | C̃(X,Y, 0) = 0}|

and V1 = |{(X : Y : 1) ∈ P2(Fq) | C̃(X,Y, 1) = 0}|.

It is obvious that N = V1 and V = V0 + V1 = V0 + N . Moreover, it follows from (7) that C̃(X,Y, 0) =

X2 +XY + Y 2 . This implies V0 = 0 . Thus, we have V = V0 + V1 = 0 +N = N . Using [14, Theorem 5.28],
we get

|V − q| = |N − q| ≤ (d− 1)(d− 2)q1/2 + c(d) = c(d) = 2, (8)

where c(d) = 1
2d(d− 1)2 + 1 = 2 as d = 2 . Note that

|{(x, y) ∈ F2
q | C(x, y) = 0 and x = y}| ≤ 2

as C(x, x) is a polynomial of degree 2 in Fq[x] . Therefore, if q−2 > 2 , then C(x, y) has an affine point off the
line x = y . As a result, we deduce that f(x) is not a permutation polynomial of Fq2 if C(x, y) is absolutely
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irreducible and q > 4 . It remains to consider only when q = 3 . Using MAGMA [5], we observe that f(x) is
not a permutation of F9 for any λ1, λ2 ∈ F3 .

Next, we assume that 3λ1 + λ2 − 3 6= 0 , then we have

N

D
=

(
λ1 + λ2 + 1

3λ1 + λ2 − 3

)x3 +
(3λ1 − λ2 + 3)

(λ1 + λ2 + 1)
z2x

x2 +
(λ1 − λ2 − 1)

(3λ1 + λ2 − 3)
z2

 .

We observe that, since h(1) = λ1 + λ2 + 1 6= 0 and 3λ1 + λ2 − 3 6= 0 , the prefactor
(

λ1 + λ2 + 1

3λ1 + λ2 − 3

)
in N

D
is

nonzero and does not have a pole, we can ignore it. Thus, we just deal with the following fraction:

x3 +
(3λ1 − λ2 + 3)

(λ1 + λ2 + 1)
z2x

x2 +
(λ1 − λ2 − 1)

(3λ1 + λ2 − 3)
z2

. (9)

Now, let A =
(3λ1 − λ2 + 3)

(λ1 + λ2 + 1)
z2 and B =

(λ1 − λ2 − 1)

(3λ1 + λ2 − 3)
z2 . Note that B 6= 0 since h(−1) = −λ1 + λ2 + 1 6= 0

and z ∈ Fq2 \ Fq . In order to guarantee that the polynomial x2 + B in the denominator of (9) does not have
any zeroes in Fq (and hence (9) does not have any poles), we have to assume that −B is not a square in Fq ,

that is,
(
−λ1 + λ2 + 1

3λ1 + λ2 − 3

)
is a square in Fq . Computing

x3 +Ax

x2 +B
− y3 +Ay

y2 +B

x− y

we obtain
C(x, y) = x2y2 +B(x2 + y2) + (B −A)xy +AB. (10)

Assume first that C(x, y) is decomposed as

(x+ α)(x+ αq)(y + α)(y + αq).

Comparing the coefficients with C(x, y) , we get αq = −α, αq+1 = −α2 = B = A . Now we have

A = B ⇐⇒ (3λ1 − λ2 + 3)

(λ1 + λ2 + 1)
z2 =

(λ1 − λ2 − 1)

(3λ1 + λ2 − 3)
z2

⇐⇒ 8λ2
1 + 8λ2 − 8 = 0

⇐⇒ λ2
1 + λ2 − 1 = 0.

So, by Proposition 1, for h(x) not to have any roots in µq+1 , λ2
1 − 4 must be a square in Fq . Note that, by

substituting λ2 = 1− λ2
1 in −λ1 + λ2 + 1

3λ1 + λ2 − 3
, we get the following:

−λ1 + λ2 + 1

3λ1 + λ2 − 3
=

λ2
1 + λ1 − 2

λ2
1 − 3λ1 + 2

=
(λ1 + 2)(λ1 − 1)

(λ1 − 2)(λ1 − 1)
=

λ1 + 2

λ1 − 2
=

λ2
1 − 4

(λ1 − 2)2
. (11)
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Here, note that λ1 6= 1 , since otherwise we have λ1 = 1 , λ2 = 1−λ2
1 = 0 which contradicts with the assumption

h(−1) = −λ1 + λ2 + 1 6= 0 . Similarly, λ1 6= 2 , since otherwise we have λ1 = 2 , λ2 = 1 − λ2
1 = −3 which

contradicts with the assumption h(1) = λ1 + λ2 + 1 6= 0 . Hence, by (11), we obtain that −λ1 + λ2 + 1

3λ1 + λ2 − 3
is a

square in Fq if and only if λ2
1 − 4 is a square in Fq . This proves item (iii).

Next, assume that C(x, y) is decomposed as

(x2 + α1xy + β1y
2 + lot)(α2x

2 + β2xy + γ2y
2 + lot).

Comparing the coefficients of degree 4 terms with those of C(x, y) , we obtain that α2 = 0, β2 = 0, γ2 = 1, α1 =

0, β1 = 0 . So we have
(x2 + α3x+ β3y + lot)(y2 + α4x+ β4y + lot).

Comparing the coefficients of degree 3 terms with those of C(x, y) , we obtain that α4 = 0, β4 = 0, α3 = 0, β3 = 0 .
So we have

(x2 + η)(y2 + ξ) = x2y2 + ξx2 + ηy2 + ηξ.

Comparing the coefficients of degree 2 terms and the constant term with those of C(x, y) , we obtain that
ξ = η = B and B − A = 0 which implies that λ2

1 + λ2 − 1 = 0 . Now, if x2 + η = 0 for some x ∈ Fq , then
x2 = −η = −B , that is, −B is a square in Fq , which gives a contradiction since we already assumed that

−B is not a square in Fq (which is the case if and only if
(
−λ1 + λ2 + 1

3λ1 + λ2 − 3

)
is a square in Fq ). Therefore,

f(x) = x5h(xq−1) is a permutation polynomial of Fq2 if and only if
(
−λ1 + λ2 + 1

3λ1 + λ2 − 3

)
is a square in Fq (recall

that this is the case if and only if λ2
1 − 4 is a square in Fq ) and λ2

1 + λ2 − 1 = 0 ; hence, we obtain the same
result with the previous one.

Now, assume that C(x, y) is decomposed as

(xy + α1x+ β1y + lot)(xy + α2x+ β2y + lot).

Comparing the coefficients of degree 3 terms with those of C(x, y) , we obtain that α1 +α2 = 0 =⇒ α2 = −α1

and β1 + β2 = 0 =⇒ β2 = −β1 . So we have

(xy + α1x+ β1y + α)(xy − α1x− β1y + β).

Comparing the coefficients of degree 2 terms with those of C(x, y) , we obtain that −α2
1 = B = −β2

1 ,
β + α − 2α1β1 = B − A and α = β . Thus, we have α2

1 = β2
1 , which implies that either α1 = β1 or

α1 = −β1 . Furthermore, using −α2
1 = −β2

1 = B , we deduce that α1, β1 /∈ Fq since −B is not a square in Fq ,
which further imply that αq

1 = −α1 and βq
1 = −β1 . We deal with the cases where α1 = β1 and α1 = −β1

separately.

First, assume that α1 = β1 . Then β − 2α2
1 + α = 2α + 2B = B − A implies that α = −A+B

2
and we

get αβ = α2 = AB =
(A+B)2

4
⇐⇒ (A − B)2 = 0 ⇐⇒ A = B again, which yields λ2

1 + λ2 − 1 = 0 giving

the same result as above. Now assume that xy + α1x + α1y + α = 0 for some x, y ∈ Fq . By taking the q -th
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power of this equation, we get xy − α1x − α1y + α = 0 (since αq
1 = −α1 and βq

1 = −β1 ). By subtracting the
second equation from the first one, we obtain 2α1(x + y) = 0 , which implies x = −y . Then, by substituting
y = −x in the equation xy+α1x+α1y+α = 0 and in xy−α1x−α1y+α = 0 , we get −x2+α = −x2−B = 0 ,
which gives a contradiction since −B is not a square in Fq . Hence, none of the factors of the decomposition
have any roots in Fq in this case.

Next, assume that α1 = −β1 . Then we have

(xy + α1x− α1y + α)(xy − α1x+ α1y + α).

Again by comparing the coefficients with those of C(x, y) , we obtain that β+2α2
1+α = 2α− 2B = B−A =⇒

α =
3B −A

2
. We get αβ = α2 = AB =

(3B −A)2

4
⇐⇒ (9B − A)(B − A) = 0 ⇐⇒ A = B or A = 9B . We

have already discussed the case A = B . So assume that A = 9B , which implies that

(3λ1 − λ2 + 3)

(λ1 + λ2 + 1)
z2 = 9

(λ1 − λ2 − 1)

(3λ1 + λ2 − 3)
z2 ⇐⇒ λ2(λ2 + 3) = 0 ⇐⇒ λ2 = 0 or λ2 = −3.

Note that in characteristic 3 , A = 9B = 0 already implies λ2 = 0 , which was already shown in the second
item. Now suppose that there exists x, y ∈ Fq such that xy + α1x − α1y + α = 0 . By taking the q -th power
of this equation, we get xy − α1x + α1y + α = 0 . By subtracting the second equation from the first one, we
obtain 2α1(x− y) = 0 , which implies x = y . Thus, in this case f(x) = x5h(xq−1) is a permutation polynomial

of Fq2 if and only if λ2 = 0 or −3 and −λ1 + λ2 + 1

3λ1 + λ2 − 3
is a square in Fq or λ2 = 0 and Fq is of characteristic

three. Note that, if λ2 = 0 , then (
−λ1 + λ2 + 1

3λ1 + λ2 − 3

)
=

(
−λ1 + 1

3λ1 − 3

)
= −1

3

is a square in Fq . Like above, 0 = λ2 = 1− λ2
1 would imply λ1 = ±1 , which contradicts h(1) 6= 0, h(−1) 6= 0 .

Therefore, λ2 6= 1− λ2
1 and Proposition 1 is again satisfied.

Similarly, if λ2 = −3 , then(
−λ1 + λ2 + 1

3λ1 + λ2 − 3

)
=

(
−λ1 − 2

3λ1 − 6

)
= −1

3

λ1 + 2

λ1 − 2
= −1

3

λ2
1 − 4

(λ1 − 2)2

is a square in Fq and Proposition 1 is satisfied. The proof of the last two items ends here.

Finally, assume that C(x, y) in (10) is absolutely irreducible. Homogenizing C(x, y) with x = X
Z and

y = Y
Z , we obtain a homogeneous polynomial of degree d = 4 . Let C̃(X,Y, Z) ∈ Fq[X,Y, Z] be the homogeneous

polynomial defined as

C̃(X,Y, Z) = Z4C

(
X

Z
,
Y

Z

)
.

Let P2(Fq) denote the projective space consisting of projective coordinates (X : Y : Z) . Let N = |{(x, y) ∈
Fq × Fq | C(x, y) = 0}| be the number of affine Fq -rational points of C . Let V = |{(X : Y : Z) ∈ P2(Fq) |
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C̃(X,Y, Z) = 0}| be the number of projective Fq -rational points of C̃ . Let V0 and V1 be the number of

projective Fq -rational points of C̃ corresponding to the cases Z = 0 and Z 6= 0 respectively. Namely,

V0 = |{(X : Y : 0) ∈ P2(Fq) | C̃(X,Y, 0) = 0}|

and V1 = |{(X : Y : 1) ∈ P2(Fq) | C̃(X,Y, 1) = 0}|.

It follows from the definitions that N = V1 and V = V0 + V1 . Moreover, it follows from (10) that C̃(X,Y, 0) =

X2Y 2 . This implies V0 = |{(1 : 0 : 0), (0 : 1 : 0)}| = 2 . Using [14, Theorem 5.28], we get

|V − q| ≤ (d− 1)(d− 2)q1/2 + c(d) = 6q1/2 + 19, (12)

where c(d) = 1
2d(d− 1)2 + 1 and d = 4 . The arguments above imply that

V = N + 2. (13)

Combining (12) and (13), we conclude that

|N − q| = |(V − q)− 2| ≤ |V − q|+ 2 ≤ 6q1/2 + 21.

Note that

|{(x, y) ∈ F2
q | C(x, y) = 0 and x = y}| ≤ 4

as C(x, x) is a polynomial of degree 4 in Fq[x] . Therefore, if q−6q1/2−21 > 4 , then C(x, y) has an affine point
off the line x = y . As q is a prime power, we note that q−6q1/2−21 > 4 for any such q , provided that q ≥ 78 .
As a result, we deduce that f(x) is not a permutation polynomial of Fq2 if C(x, y) is absolutely irreducible
and q ≥ 78 . It remains to consider q < 78 . Now, since characteristic of Fq is odd and 5 must be relatively
prime with q − 1 , we need to consider only q ∈ {3, 5, 7, 9, 13, 17, 19, 23, 25, 27, 29, 37, 43, 47, 49, 53, 59, 67, 73} .
Using MAGMA [5], we observe that there are no other permutation polynomials of the form f(x) other than
the ones obtained by Theorem 2. 2

Remark 1 When λ1 6= 0 and λ2 6= 0 , the polynomial f(x) we have studied in this paper is quasimultiplicative
equivalent to another class of permutation polynomials given by g(x) = x(1+ axq(q−1) + bx2(q−1)) ∈ Fq2 [x] with
a, b ∈ F∗

q2 , whose complete characterization in any characteristic could only be achieved in a total of six different
papers [2, 4, 15, 16, 23, 24]. Namely, g(x) is introduced in [24], where the sufficient conditions for g(x) to
be a permutation polynomial are given in even characteristic. In [2] and [15], these conditions are shown to
be also necessary. Then, a complete characterization in characteristic three is given in [16]. After that, in
characteristic bigger than three, the sufficient conditions are given in [23] and those conditions are proven to
be necessary in [4]. In this paper, we have provided much simpler and shorter proofs in any characteristic by
taking λ1, λ2 from Fq . Moreover, the equivalence is given by f(x) = b−1g(x2q+3) , which requires b 6= 0 , and
therefore this class does not cover many of our conditions given for λ1 = 0 or λ2 = 0 as a, b ∈ F∗

q2 .

Acknowledgment
We would like to thank the anonymous referees for their valuable suggestions and comments which improved
our paper.

790



GÜLMEZ TEMÜR and ÖZKAYA/Turk J Math

References

[1] Akbary A, Wang Q. On polynomials of the form xrf(x(q−1)/l) . International Journal of Mathematics and
Mathematical Sciences 2007; Article 23408. https://doi.org/10.1155/2007/23408

[2] Bartoli D. On a conjecture about a class of permutation trinomials. Finite Fields and Their Applications 2018; 52:
30-50. https://doi.org/10.1016/j.ffa.2018.03.003

[3] Bartoli D, Giulietti M. Permutation polynomials, fractional polynomials, and algebraic curves. Finite Fields and
Their Applications 2018; 51: 1-16. https://doi.org/10.1016/j.ffa.2018.01.001

[4] Bartoli D, Timpanella M. A family of permutation trinomials over Fq2 . Finite Fields and Their Applications 2021;
70: Article 101781. https://doi.org/10.1016/j.ffa.2020.101781

[5] Bosma W, Cannon J, Playoust C. The Magma algebra system. I. The user language. Journal of Symbolic
Computation 1997; 24: 1179-1260. https://doi.org/10.1006/jsco.1996.0125

[6] Dickson LE. The analytic representation of substitutions on a power of a prime number of letters with a discussion
of the linear group. Annals of Mathematics 1896; 11: 65-120. https://doi.org/10.2307/1967224

[7] Grassl M, Özbudak F, Özkaya B, Gülmez Temür B. Complete characterization of a class of permutation trinomial
in characteristic five. Cryptography and Communications 2024; 16: 825-841. https://doi.org/10.1007/s12095-024-
00705-2

[8] Gupta R, Sharma RK. Some new classes of permutation trinomials over finite fields with even characteristic. Finite
Fields and Their Applications 2016; 41: 89-96. https://doi.org/10.1016/j.ffa.2016.05.004

[9] Hermite C. Sur les fonctions de sept lettres. Comptes rendus de l’Academie des Sciences Paris 1863; 57: 750-757.
(in French)

[10] Hou X. Permutation polynomials over finite fields - a survey of recent advances. Finite Fields and Their Applications
2015; 32: 82-119. https://doi.org/10.1016/j.ffa.2014.10.001

[11] Hou X. Determination of a type of permutation trinomials over finite fields II. Finite Fields and Their Applications
2015; 35: 16-35. https://doi.org/10.1016/j.ffa.2015.03.002

[12] Hou X. A survey of permutation binomials and trinomials over finite fields. (English summary). In: Topics in Finite
Fields. Contemporary Mathematics 632, American Mathematical Society, Providence, RI, 2015, pp. 177-191.

[13] Hou X. Applications of the Hasse-Weil bound to permutation polynomials. Finite Fields and Their Applications
2018; 54: 113-132. https://doi.org/10.1016/j.ffa.2018.08.005

[14] Hou X. Lectures on finite fields. Graduate Studies in Mathematics 190, American Mathematical Society, Providence,
RI, 2018.

[15] Hou X. On a class of permutation trinomials in characteristic 2. Cryptography and Communications 2019; 11:
1199-1210. https://doi.org/10.1007/s12095-018-0342-1

[16] Hou X, Tu Z, Zeng X. Determination of a class of permutation trinomials in characteristic three. Finite Fields and
Their Applications 2020; 61: Article 101596. https://doi.org/10.1016/j.ffa.2019.101596

[17] Li K, Qu L, Chen X. New classes of permutation binomials and permutation trinomials over finite fields. Finite
Fields and Their Applications 2017; 43: 69-85. https://doi.org/10.1016/j.ffa.2016.09.002

[18] Li K, Qu L, Wang Q. New constructions of permutation polynomials of the form xrh(xq−1) over Fq2 . Designs,
Codes and Cryptography 2018; 86: 2379-2405. https://doi.org/10.1007/s10623-017-0452-3

[19] Lidl R, Niederreiter H. Finite Fields. (Encyclopedia of Mathematics and its Applications), Cambridge, UK:
Cambridge University Press, 1997.

[20] Mullen GL, Panario D. Handbook of Finite Fields. Discrete Mathematics and its Applications. Boca Raton, FL,
USA: CRC Press, 2013.

791



GÜLMEZ TEMÜR and ÖZKAYA/Turk J Math

[21] Özbudak F, Gülmez Temür B. Classification of permutation polynomials of the form x3g(xq−1) of Fq2 where g(x) =

x3 + bx+ c and b, c ∈ F∗
q . Designs, Codes and Cryptography 2022; 90: 1537-1556. https://doi.org/10.1007/s10623-

022-01052-0
[22] Park YH, Lee JB. Permutation polynomials and group permutation polynomials. Bulletin of the Australian

Mathematical Society 2001; 63: 67-74. https://doi.org/10.1017/S0004972700019110

[23] Tu Z, Zeng X. A class of permutation trinomials over finite fields of odd characteristic. Cryptography and
Communications 2019; 11: 563-583. https://doi.org/10.1007/s12095-018-0307-4

[24] Tu Z, Zeng X, Li C, Helleseth T. A class of new permutation trinomials. Finite Fields and Their Applications 2018;
50: 178-195. https://doi.org/10.1016/j.ffa.2017.11.009

[25] Wan D, Lidl R. Permutation polynomials of the form xrf(x(q−1)/d) and their group structure. Monatshefte für
Mathematik 1991; 112: 149-163. https://doi.org/10.1007/BF01525801

[26] Wang Q. Cyclotomic mapping permutation polynomials over finite fields. Sequences, subsequences, and conse-
quences. Lecture Notes in Computer Science 2007; 4893: 119-128. https://doi.org/10.1007/978-3-540-77404-4_11

[27] Wang Q. Polynomials over finite fields: an index approach. In: Combinatorics and Finite Fields, Difference
Sets, Polynomials, Pseudorandomness and Applications. Berlin, Germany: De Gruyter, 2019, pp. 319-348.
https://doi.org/10.1515/9783110642094-015

[28] Zieve ME. On some permutation polynomials over Fq of the form xrh(x(q−1)/d) . Proceedings of the American
Mathematical Society 2009; 137: 2209-2216. https://doi.org/10.48550/arXiv.0707.1110

792


	On a class of permutation trinomials over finite fields
	Recommended Citation

	Introduction
	Preliminaries
	Roots of h(x) in q+1
	PPs over finite fields of even characteristic
	PPs over finite fields of odd characteristics

